Code: ECMC1T5B

I M.Tech - I Semester-Regular/Supplementary Examinations January 2017

ANTENNA ARRAYS AND SYNTHESIS (MICROWAVE \& COMMUNICATION ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Answer any FIVE questions. All questions carry equal marks

1. a) Derive FRIIS transmission formula and explain its significance.
b) Find the directivity of an antenna having radiation resistance of 72Ω and loss resistance of 12Ω and a gain of 20 .
2. a) Obtain the radiation pattern of 4 sources forming a uniform BSA with a spacing of $\lambda / 2$.
b) Derive an expression for electric field intensity of array of n isotropic sources of equal amplitude and spacing and having a phase difference of δ.
3. a) Explain Effect on the Array Radiation Pattern of mutual
coupling array.
b) Discuss about Schelkunoff's unit circle representation. 6 M
4. a) Give expression for Array Directivity and Array factor of
Circular arrays.
8 M
b) Discuss about transformation between circular and elliptical arrays.
5. a) Discuss Woodward-Lawson method. 7 M
b) Discuss Fourier Transform Method. 7 M
6. Explain briefly about Hemispherical coverage using planar surface, half sphere, Cone, Ellipsoid and Paraboloid. 14 M
7. a) Define the following parameters w.r.t phased array
antenna:
(i) Element Pattern, Directivity and Gain
(ii) Maximum-Array-Gain Theorem
b) Discuss Slot-Fed Patch Array. 6 M
8. a) Explain in detail about gain measurement by direct comparison method.
b) Explain in detail about antenna test ranges.
